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The most studied and cultivated microalgae have a temperature optimum between 20 and
35°C. This temperature range hampers sustainable microalgae growth in countries with
colder periods. To overcome this problem, psychrotolerant microalgae, such as the snow
alga Chloromonas typhlos, can be cultivated during these colder periods. However, most
of the research work has been carried out in the laboratory. The step between laboratory-
scale and large-scale cultivation is difficult, making pilot-scale tests crucial to gather more
information. Here, we presented a successful pilot-scale growth test of C. typhlos. Seven
batch mode growth periods were compared during two longer growth tests in a
photobioreactor of 350 L. We demonstrated the potential of this alga to be cultivated
at colder ambient temperatures. The tests were performed during winter and springtime to
compare ambient temperature and sunlight influences. The growth and CO2 usage were
continuously monitored to calculate the productivity and CO2 fixation efficiency. A
maximum dry weight of 1.082 g L−1 was achieved while a maximum growth rate and
maximum daily volumetric and areal productivities of 0.105 d−1, 0.110 g L−1 d−1, and
2.746 gm−2 d−1, respectively, were measured. Future tests to optimize the cultivation ofC.
typhlos and production of astaxanthin, for example, will be crucial to explore the potential
of biomass production of C. typhlos on a commercial scale.

Keywords: biomass production, greenhouse, microalgae, psychrotolerant, year-round cultivation, CO2 utilization,
cold climate

INTRODUCTION

Microalgae are a diverse group of single-celled eukaryotic organisms that are ubiquitously present in
a wide range of habitats and conditions. They can use CO2 as a carbon source and sunlight as an
energy source to produce organic matter through photosynthesis (Benedetti et al., 2018; Abo et al.,
2019; Vale et al., 2020; Vecchi et al., 2020). Their photosynthetic efficiency can be 10 times more
efficient than that of terrestrial plants, and when combined with their fast growth rates, they are a
promising source of renewable feedstock for different applications (Singh and Ahluwalia, 2013;
Benedetti et al., 2018; Khan et al., 2018). It is, thus, no surprise that the cultivation of microalgae has
bloomed in recent years due to its vast potential (Richmond, 2000; Chisti, 2007; Singh and Ahluwalia,
2013; Benedetti et al., 2018; Khan et al., 2018). The true potential of microalgae, however, remains
untapped on a larger scale. For many microalgae species, several challenges remain to reach
sustainable and economically viable cultivation (Richmond, 2000; Chisti, 2007; Mata et al., 2010;
Sayre, 2010; Tredici, 2010).
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Currently, only a few selective microalgae are commercially
cultivated (Garrido-Cardenas et al., 2018; Dolganyuk et al., 2020;
Wang et al., 2021). This is often attributed to the legislative
burden associated with the cultivation of novel species, for
example, the European Novel Foods Regulation (Araújo et al.,
2021). Next to the aforementioned, only a select few of the
thousands of species are studied (Guiry, 2012; Garrido-
Cardenas et al., 2018). Most of this research is carried out on
the laboratory scale and often in well-controlled small volumes,
making the extrapolation to larger-scale cultivation difficult
(Tredici, 2010; Quinn et al., 2011; Moody et al., 2014).
Furthermore, most microalgae studied or commercially
cultivated are microalgae with optimal growth temperatures
between 20 and 35°C (Kvíderová et al., 2017; Cheregi et al.,
2019; Suzuki et al., 2019; Dolganyuk et al., 2020). Nevertheless,
many countries have a colder climate, making year-round
cultivation difficult unless cultures are heated during colder
months. Since the production costs of microalgae are still a
bottleneck in the expansion of commercialization, a year-
round microalgae cultivation, without the need for excessive
heating, can support sustainability and economic feasibility
(Matsumoto et al., 2017; Garrido-Cardenas et al., 2018;
Cheregi et al., 2019; Suzuki et al., 2019).

Cold-adapted microalgae could bridge the colder periods
during year-round microalgae cultivation (Kvíderová et al.,
2017; Matsumoto et al., 2017; Suzuki et al., 2019). While,
cold-adapted microalgae, often referred to as snow algae, are
being studied more in recent years (Remias et al., 2016; Kvíderová
et al., 2017; Hoham and Remias, 2020); most studies focus on the
ecology and taxonomy. A few studies describe the cultivation of
snow algae in a laboratory setting, but knowledge of their
cultivation on a larger scale is largely absent (Kvíderová, 2010;
Kvíderová et al., 2017; Matsumoto et al., 2017). Aside from being
able to grow in colder temperatures, snow algae can be a source of
polyunsaturated fatty acids (PUFAs) and other valuable
compounds such as astaxanthin (Varshney et al., 2015;
Kvíderová et al., 2017; Cheregi et al., 2019; Sathasivam et al.,
2019; Suzuki et al., 2019). Snow algae, many belonging to the
Chloromonas–Chlamydomonas complex, are polyextremophiles
adapted to survive in regions with harsh conditions such as low
temperatures, high irradiation, and lack of nutrients and liquid
water (Remias et al., 2005; Kvíderová, 2010; Kvíderová et al., 2017;
Procházková et al., 2018; Hoham and Remias, 2020).

One snow alga with a potential commercial value is the red snow
alga Chloromonas typhlos (Chlamydomonas nivalis). It is one of the
most studied snow algae and is known to cause the phenomenon of
red patches of snow (Mosser et al., 1977; Remias et al., 2005;
Cvetkovska et al., 2017). This phenomenon of red snow, often
called “watermelon snow”, is caused by the red pigment
astaxanthin and its acid ester derivatives (Remias et al., 2005;
Cvetkovska et al., 2017). However, to the best of our knowledge,
no studies describe the large-scale cultivation of this alga in a
photobioreactor. In order to help close the gap between
laboratory experiments and large-scale cultivation of the snow
alga C. typhlos, we performed a proof-of-concept study in which
we grew C. typhlos in a photobioreactor installed in a minimally
heated (frost-protection) greenhouse during colder periods.

MATERIALS AND METHODS

Microalga Strain and Culture Conditions
Chloromonas typhlos (SAG 26.68) was purchased from SAG
(Department Experimental Phycology and Culture Collection
of Algae, University of Göttingen, Germany). The culture was
maintained in the laboratory in a sterilized (autoclaved at 121°C
for 20 min) freshwater medium based on the SAG basal medium
(version 10.2008). It was kept in a 250-ml Erlenmeyer flask on an
orbital shaker at 90 rpm with 70 μmol m−2 s−1 light exposure
(cool-white fluorescent) in a climate-controlled room at 22°C
(±0.2 SD) under a 16/8-h day/night regime. For upscaling, the
cultures were transferred, respectively, to aerated 1, 2, and 40 L
recipients. Ambient air was used for aeration, and no extra
CO2 was provided during upscaling of the cultures. Cultures in
the photobioreactors were grown in the same medium
sterilized by filtration (0.1 μm). The freshwater medium had
the following composition: 152 mg L−1 HNO3, 22 mg L−1

H3PO4, 148 mg L−1 KOH, 6.3 mg L−1 Fe-DTPA, 42 pg L−1

CuSO4.5H2O, 2.8 μg L−1 ZnSO4, 7.2 μg L−1 MnSO4,
4.3 μg L−1 Na2MoO4, 40 μg L

−1 Na2B4O7, 0.2 g L
−1 NaHCO3,

and 23 mg L−1 MgSO4.7H2O. Furthermore, nitrogen and
phosphorus were added to the culture when needed, based
on the regular measurement of their concentrations, to
maintain non-nutrient conditions. The medium was
prepared autonomously by a central computer control unit
in the greenhouse and fed to the cultures by a feed supply unit
(FertiMiX 600, Hortimax).

FIGURE 1 | Picture of the photobioreactor used to perform the growth
experiments with C. typhlos. The red frame shows theC. typhlos cells as seen
throughout the experiments. The cells were always green.
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Horizontal Tubular Multilayer
Photobioreactor
A tubular multilayer photobioreactor with a volume of 350 L was
used for the cultivation of C. typhlos. The reactor is part of the
pilot plant of the EU project “Sunbuilt” and is located in a
greenhouse in Geel, Belgium. The photobioreactor consists of
transparent unplasticized polyvinylchloride (PVC-u) tubes with
an external diameter of 5 cm. To avoid shading of lower located
tubes, a triangle-like configuration of the tubes was used
(Figure 1). For the inoculation of the photobioreactor,
approximately 40 L of a 0.5–1 g L−1 C. typhlos culture was used.

Modus Operandi of the Photobioreactor
C. typhlos was cultivated in a 350-L (Vr) bioreactor during two
growth tests ranging fromMarch toMay 2019 (growth test 1) and
from December 2019 to February 2020 (growth test 2) in non-
nutrient limiting conditions. To evaluate the growth of C. typhlos
during these two tests, seven (three during the first test and four
during the second test) 9-day growth periods were selected and
compared. Prior to starting a 9-day growth period, C. typhlos was
partially harvested, and the culture was refreshed with a new
medium and permitted to regrow before a new 9-day growth
period started. The first period at the start of growth test 2
(December 2019), however, started right from inoculation, giving
a lower start concentration.

The growth was monitored continuously online with a
turbidity sensor (Georg Fischer Signet 4,150 turbidimeter
0–1000 NTU) and offline by dry weight measurements. The
medium was circulated by using a centrifugal pump
(900 rpm), and filter-sterilized (0.1 μm) ambient air was
injected into the lowest tube at a continuous rate for mixing.
The working pH was set at 8, continuously measured, and
maintained by the injection of CO2 on demand, in the airflow,
with a maximum flow of 885.9 ml normal per minute. The total
CO2 injected into the photobioreactors was measured during the
growth periods (IN-FLOW mass flow meter/controller
Bronkhorst, the Netherlands). The ambient temperature inside
the greenhouse was monitored (Ektron III-C, Hortiplan)
continuously and maintained at night at a minimal
temperature of 10°C for frost protection with a gas heater
(HHB-100A-230V, Holland Heaters).

When the temperature inside the greenhouse reached 23°C,
foggers inside the greenhouse and sprinklers on the roof were
turned on automatically to prevent an excessive rise in
temperature. Photosynthetically active radiation (PAR) was
measured continuously with a PAR sensor (LI-COR LI-190 R
Quantum sensor) installed inside the greenhouse, on top of the
reactor. A solar irradiance meter (LP02-TR pyranometer) was
installed outside the greenhouse to measure total solar
radiation. At a measured value of 400 W m−2, a sunscreen
inside the greenhouse was automatically partially closed to
reduce irradiation by 20–30%. The effect of additional lighting
to prolong the length of daytime was studied between 10
December 2019 and 19 February 2020 by providing extra
lighting (Philips TL-D 58 W 865; 504 mmol m−2) from 6.30
to 10.30 and 15.30 to 22.00 during 3–4 days to lengthen the day

and simulate a 16/8-h day/night cycle. During the other days,
the extra lighting was not switched on to see if there was a
difference between days with extra lighting versus days
without extra lighting. Control, logging, and steering were
carried out automatically by computer (MultiMate series III,
Hortiplan).

Growth Determination
The algal growth in the bioreactor was monitored online every
30 min with a turbidity meter. The measured turbidity was
correlated with a dry weight value based on a correlation
described previously (Thoré et al., 2021). In addition to the
continuous monitoring by turbidity, the dry weight (g L−1)
was determined at the start (Cs) and end (Ce) of each batch
and at random moments during the growth periods. For this,
samples (5 ml/sample) were filtered over pre-dried and pre-
weighed Whatman GF/C glass microfiber filter papers
(0.45 µm) and washed. After drying for 24 h at 70°C, the
samples were cooled in a desiccator before weighing.

Calculations of Volumetric and Areal
Productivities, Specific Growth Rate, CO2

Fixation, Influence of Total PAR, and CO2

Utilization Efficiency
The total volumetric biomass productivity Pv (dry g L

−1 d−1) for
the batch mode was calculated by the formula:

Pv � (Ce − Cs)/td,
with Cs and Ce, the start and end biomass (g L−1), respectively,

and td was the cultivation period (9 days for total and 1 day for
(maximum) daily volumetric biomass productivity). The total
areal biomass productivity Pa (dry g m−2 d−1) was calculated as
follows:

Pa � 350(Ce − Cs)/14td,
with 350 L being the volume of the reactor, td being 9 days for

the total or 1 day for the (maximum) daily biomass areal
productivity, and 14 m2 being the total area covered by the
reactor.

The specific growth rate was calculated over the 9-day period:

µ � ln(Ne −Ns)/td,
with Ne being the biomass at the end and Ns being the biomass at
the start of the 9-day period and td being 9 days.

To know the daily yield on light (PL), the daily areal
productivity (Pa) was divided by the total PAR (PART)
received for that specific day, resulting in PL:

PL � Pa/PART.

The total CO2 injected was measured during each 9-day period
by using a mass flow meter (IN-FLOW mass flow meter/
controller Bronkhorst, the Netherlands). The theoretical total
CO2 fixation (CO2th, g) by the algae for each batch was calculated
as follows:
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CO2th � 0.5(Ce − Cs)Vr(mCO2

mC
),

with mCO2 and mC being the molar masses of CO2 and C,
respectively, Vr the volume of the reactor, and 0.5 being the
average percentage of the carbon content in the biomass
(Mirón et al., 2003; Tang et al., 2011). Higher or lower
carbon content is nonetheless possible (Mandalam and
Palsson, 1998; Patil et al., 2012; Rendón-Castrillón et al.,
2021) which might lead to significant differences
(Adamczyk et al., 2016).

The CO2 fixation rate CO2fr was calculated as 1.833Pv , with
1.833 derived from multiplying the average carbon content
(50%) per unit of biomass with the CO2 carbon ratio (44/12).

To have an idea about the CO2 uptake efficiency, the calculated
CO2th was divided by the total CO2 (CO2t, g) injected (influent
CO2) and multiplied by 100 to know the utilization efficiency
percentage (U%):

U% � 100CO2th/CO2t.

The aforementioned formula is a simplified version of the
formula: Influent of CO2−effluent CO2

influent CO2
100 (Klinthong et al., 2015), in

which the numerator is replaced by the theoretical total CO2

fixation since the photobioreactor had nomeasurement of CO2 in
the outgoing gases. The total loss of CO2 (CO2tL) was calculated
by subtracting CO2th from CO2t:

CO2tL � CO2t − CO2th.

Statistical Analysis
To compare the differences in temperatures, received PAR,
and daily biomass production between the seven batches, a
one-way analysis of variance (ANOVA) with post hoc Tukey
HSD with a significance level of 0.05 was performed.
Normality was tested with a Shapiro–Wilk test. Data are
given as mean ± SD.

RESULTS AND DISCUSSION

Growth and Biomass Productivity
To analyze the 9-day periods, the daily productivities were
compared, and a difference was found (p < 0.05): the period
17–26 April was significantly different from periods 17–26
January 2020 and 27 January–5 February 2020, while the
period 27 January–5 February 2020 was also significantly
different from the period 10–19 December 2019. To further
assess the biomass obtained during the cultivation of C.
typhlos in the seven 9-day periods, we looked at the specific
growth rate and total and maximum volumetric and areal
biomass productivities. Table 1 summarizes these results. The
highest growth rate was achieved during the 10–19 December
period, which was five times higher than the 17–26 April period.
Figure 2 shows that the growth halted after 6 days in the 17–26
April period, leading to a lower growth rate. The highest total
volumetric biomass productivity (0.067 g L−1 d−1) was obtained
during the period 27 January–5 February 2020. While a
maximum biomass productivity of 0.110 g L−1 d−1 was
obtained during the period 1–10 April 2019, the total
volumetric productivity (0.046 g L−1 d−1) was lower than that
of three other periods during the winter (Table 1).

A potential explanation for the lower total volumetric
productivity during the 1–10 April period could be that a
maximum ambient temperature of 30.5°C was reached inside
the greenhouse on 7 April 2019, causing temperature stress on the
cells and leading to a decline in growth. This can be seen in
Figure 2 between days 8 and 9. A similar effect could be observed
from day 6 during the period 17–26 April 2019. During this
period, the lowest total volumetric biomass productivity
(0.010 g L−1 d−1) and growth rate (0.020 d−1) were obtained.
This growth period had the highest average temperature
(22.5°C), the highest maximum temperature (35.2°C), and
several (5) consecutive days with temperatures above 30°C
(Figure 3). A stress response at a temperature around 30°C is
in line with what others have reported (Teoh et al., 2013; Lukeš

TABLE 1 | Volumetric and areal biomass productivities in dry weight of C. typhlos grown in batch for 9-day periods in a 350-L horizontal tubular reactor and the specific
growth rates are shown. The specific growth rate (µ) is calculated over the 9-day period. The total volumetric (Pv) and areal (Pa) productivities are calculated over the 9-day
period by dividing the total dry weight produced by 9. Themaximum volumetric (Max Pv) or areal (Max Pa) productivity is the maximum value obtained for the daily productivity
during that 9-day period.

Period µ Pv Max Pv Pa Max Pa

d−1 g L−1 d−1 g L−1 d−1 g m−2 d−1 g m−2 d−1

19–28 March 2019 0.050 0.028 0.075 0.694 1.871
1–10 April 2019 0.066 0.046 0.110 1.147 2.746
17–26 April 2019a 0.020 0.010 0.055 0.252 1.384
10–19 December 2019b 0.105 0.032 0.063 0.791 1.561
17–26 January 2020b 0.072 0.057 0.069 1.431 1.717
27 January–5 February 2020b 0.091 0.067 0.069 1.680 1.720
10–19 February 2020b 0.091 0.060 0.108 1.508 2.695
Mean 0.0707 ± 0.029 0.043 ± 0.021 0.078 ± 0.021 1.072 ± 0.514 1.956 ± 0.543

aGrowth during this period was comparable with other periods during the first 4–5 days but halted afterward. This is most likely due to 5 consecutive days of ambient temperatures over
30°C. See text for more details.
bDenotes periods in which artificial lighting was provided; see text for more details.
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FIGURE 2 | Growth curves of C. typhlos during seven different 9-day batch growth tests in a 350-L photobioreactor. The end concentration (Ce) of each growth
period is depicted next to the respective lines in g L−1.

FIGURE 3 | Box plot of the temperature for each period. Outliers are shown by dots above the maximum. See also Table 2.
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et al., 2014). Contrary to Teoh et al. (2013) and Lukeš et al. (2014),
we measured the ambient temperature in the greenhouse rather
than the culture temperature itself. Since multiple parameters can
influence the culture temperature and large differences between
ambient and culture temperature are possible (Tredici and
Materassi, 1992; González-Camejo et al., 2019), future
laboratory and pilot-scale tests that measure both the ambient
and culture temperatures are required to fully understand the
temperature impact on C. typhlos.

Productivities and growth rates for theChloromonas species were
lower than the literature values: over the nine batches average
volumetric and areal productivities of 0.043 ± 0.021 g L−1 d−1 and
1.072 ± 0.514 gm−2 d−1, respectively, were obtained, while growth
rates varied between 0.020 and 0.105 d−1. However, a comparison is
difficult to obtain due to insufficient information or the different
cultivation techniques used (Teoh et al., 2013; Idrissi Abdelkhalek
et al., 2016; Hulatt et al., 2017; Onuma et al., 2018; Morales-Sánchez
et al., 2020; Peng et al., 2021). Compared to commercially cultivated
algae, the production and growth rate is lower and needs to be
improved to be competitive (de Vree et al., 2015; Barka and Blecker,
2016; Benedetti et al., 2018; Darvehei et al., 2018; Metsoviti et al.,
2019).

Aside from temperature stress, algae, in general, react to light
stress (Minhas et al., 2016; Shi et al., 2020; Zheng et al., 2020),
although C. typhlos has mechanisms; for example, the production of
astaxanthin to cope with high light intensities (Gorton et al., 2007;
Remias et al., 2010; Zheng et al., 2020). To estimate the influence of
total PAR on the growth of C. typhlos, the total averaged PAR was
measured. Table 2 shows the average PAR received during the
periods, the average daily yield on light (PL), average temperatures,
and whether they differ significantly between growth periods.

During the 10–19 February period, the total PAR was higher
than the spring growth periods. There was a higher total PAR
during the February 2020 period due to a few exceptional sunny
days throughout this period and the extra artificial lighting. In
addition, the sun screens in the greenhouse did not partly close
since the minimal closing limit of 400Wm−2 was most often not
reached, contrary to the spring periods. Table 2 shows that the
growth period 17–26 of January had the lowest temperature and
second lowest total PAR light, yet the total volumetric and areal
productivities were above the averages of the growth periods (see
Table 1). This shows that even at lower temperatures and

sunlight, C. typhlos can still be cultivated at comparable
productivities to higher temperature and sunlight conditions.

The total PAR received differed significantly between the
growth periods. To normalize the growth for PAR received,
we looked at the yield per light. Only period 17–26 April 2019
was significantly different from periods 17–26 January 2020 and
27 January–5 February 2020. The time period of 16–26 April 2019
was also significantly different from all other periods in regard to
the temperatures reached (Table 2). The period 17–26 April 2019
was also different than most other growth periods for the total
light received (only periods 1–10 April 2019 and 10–19 February
2020 were similar). This shows the influence of higher
temperatures (>30°C) on the growth of C. typhlos. Table 2
also shows that at lower temperatures, C. typhlos still had a
high yield in light.

Like many cold adapted algae, C. typhlos is a potential source of
lipids and carotenoids produced at lower temperatures and high
light intensities as a mechanism to protect the cells (Gorton et al.,
2007; Remias et al., 2010; Liu and Nakamura, 2019; Hoham and
Remias, 2020; Shi et al., 2020; Peng et al., 2021). If C. typhlos can
produce sufficient biomass and valuable products such as
astaxanthin at a low temperature with high light intensities, it
can be a sustainable approach to cultivate microalgae during
colder periods without excessive heating.

During our growth experiments, C. typhlos cells were green
(Figure 1). We did not notice the typical red color indicative of
astaxanthin. All experiments were performed in non-nutrient
limiting batches, and no attempts were made during these
experiments to stress the cells specifically to produce astaxanthin
and color red. As no analysis was performed on the astaxanthin
content, we cannot rule out that it was produced at levels too low to
give the cells their typical red color. For future work, it will be vital to
characterize the specific parameters, such as low nitrogen, that
produce red C. typhlos cells as astaxanthin is an important and
valuable carotenoid (Leya et al., 2009; Han et al., 2013; Sathasivam
et al., 2019).

Turbidity Measurements to Monitor Growth
and Influence of (Artificial) Light
During the winter period, artificial lights were turned on for several
days in each period to simulate a 16/8 day-night regime. These days

TABLE 2 | Average total PAR, average daily yield in light (PL) for each growth period, and greenhouse temperatures measured during the batch tests. A significance between
groups is also shown with p < 0.05. The identifier is used to show the significant differences between periods.

Period (ID) Average total
PAR

Significant versus Average PL Significant versus Average temperature Significant versus

Mmol m−2 g μmol−1 d−1 °C

19–28 March 2019 (A) 3,074 ± 365 C 0.22 ± 20 / 17.5 ± 0.9 C, E, and F
1–10 April 2019 (B) 3,446 ± 467 G 0.31 ± 29 / 18.4 ± 1.4 C, E, F, and G
17–26 April 2019 (C) 4,283 ± 509 A, D, E, and F 0.1 ± 0.12 E, F 22.5 ± 2.5 A, B, D, E, F, and G
10–19 December 2019a (D) 2,709 ± 449 C and G 0.26 ± 0.24 / 16.7 ± 1.8 C and E
17–26 January 2020a (E) 2,888 ± 770 C and G 0.39 ± 0.15 C 12.4 ± 1.4 A, B, C, D, F, and G
27 January–5 February 2020a (F) 3,379 ± 925 C and G 0.40 ± 0.25 C 15.1 ± 1.0 A, B, C, and E
10–19 February 2020a (G) 5,039 ± 727 B, D, E, and G 0.25 ± 0.16 / 15.5 ± 1.5 B, C, and E

aDuring these periods artificial light was provided. The artificial light is included in the average totals depicted here.
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were then compared to days without artificial light. However, no
significant difference in biomass productivity was found between the
days with artificial light versus the days without (Figure 4). Several
reasons might explain why the extra lighting had no effect. One
explanation could be that our 9-day test periods were too short to
detect a difference. A second reason could be the high variance of
received sunlight between the days. The PAR sum from the sunlight
ranged from 1,588 to 5,431 mmol m−2. On days with the addition of
artificial light, the PAR sum increased by 10–31%; however, due to
the high variance, the effect was limited. A third reason could be the
use of insufficient or non-specific lighting. The reactors were
constructed in 2014 and equipped with fluorescent lamps
(6500 K) that only provided minimal extra lighting during the
dark period. However, in recent years, more attention has been
given to the use of modern LED lamps with a specific light spectrum
to optimize the growth of microalgae (Glemser et al., 2016); using
better lights might therefore have a significant impact on growth. A
last final reason could be the placing of the lights. They were fixed
underneath the PBR tubes and only reached a small area of the total
PBR tubes. Placing LED lamps closer to each individual tube could
increase the effects substantially.

Figure 5A shows a typical growth pattern based on turbidity
measurements (NTU). A general increase in turbidity can be seen
over the course of several days (the black arrow in Figure 5A),

indicating an increase in cells and biomass. When looking at a 24-
h period, without artificial light added on days 3, 4, and 5, a
typical pattern can be observed, pointing toward a diurnal
rhythm. The cell cycle of photosynthetic microalgae is
influenced by a day-night regime in which cell growth (G1)
takes place during the light phase (daytime), and the
reproductive, cell division phase (S/M) occurs during the dark
period (nighttime) (Cross and Umen, 2015; Ivanov et al., 2019;
Zou and Bozhkov, 2021). The NTU profile (Figure 5A) can be
linked to this diurnal rhythm. The steady increase in NTU a few
hours after sunrise to sunset follows the cell growth: the
enlargement of the cells and increase in dry weight (Lien and
Knutsen, 1979; Spudich and Sager, 1980; Ostgaard and Jensen,
1982; Bišová and Zachleder, 2014; de Winter et al., 2017b). After
sunset and during the night, the NTU fluctuated little, which can
be linked to the cells no longer growing but dividing within the
parental cell (Harper, 1999; Cross and Umen, 2015; Ivanov et al.,
2019; Zou and Bozhkov, 2021). Throughout warmer periods, the
NTU decreased more overnight, which can be linked to the loss of
biomass during the night. During warmer nights, the respiration
rates can be higher than on colder nights (De-Luca et al., 2019;
Masojídek et al., 2021), leading to more biomass loss and
potentially explaining the more pronounced decrease in NTU
during warmer nights.

FIGURE 4 | Daily productivity of C. typhlos (g L−1 d−1) and PAR sum of each specific day during the two growth periods. Each square represents 1 day.
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This nightly biomass loss is often attributed to respiration
using compounds like carbohydrates during the night
(Ogbonna and Tanaka, 1996; Michels et al., 2014;

Edmundson and Huesemann, 2015; Åkerström et al., 2016).
Next to the aforementioned, general pattern, a rapid and
substantial drop or increase in turbidity, respectively, at

FIGURE 5 | (A) shows the typical growth pattern of C. typhlos observed over several days. A representative period during one of the winter periods is shown here
with artificial lights being used to extend the day. Artificial lights were kept on between 6.30–10.30 and 15.30–22.00, although slight variances were possible depending
on the real sunset and sunrise times of the specific days. (B) shows the difference in the NTU value calculated for every 30 min (NTUx+30min—NTUx) plotted over time.
Arrows indicate specific time points or substantial increases/decreases. The symbol ° denotes the artificial light switching off at sunrise, while the symbol * denotes
the artificial lights switching on at sunset. See text for more details.
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sunrise and sunset, is seen. To highlight this, Figure 5B shows
the difference in NTU between each half-hour registered. The
drop in turbidity at sunrise is indicated with red arrows, while
the increase at sunset is visualized with green arrows. A rapid
decrease or increase points toward a strong and swift reaction
of the algae to the presence or absence of light. The NTU is
monitored with a nephelometric sensor that uses white light
(400–700 nm) that can readably be used by microalgae
(Carvalho et al., 2006; de Mooij et al., 2016). Potentially, C.
typhlos is able to activate and upregulate its photosynthetic
system very fast, leading to a substantial increase in absorption
of light while reducing the scattered light and causing a rapid
and substantial drop in turbidity (Thorne and Nannestad,
1959; Kourti, 2000; Gregory, 2009). For extremophiles, a
fast activation or deactivation of their metabolism can be
crucial to cope with harsh conditions (Harel et al., 2004;
Peng et al., 2021).

As daughter cells are released from the parental cell at the end of
the dark period (Mihara and Hase, 1971; Vítová and Zachleder,
2005; Harris et al., 2009; Bišová and Zachleder, 2014; Zou and
Bozhkov, 2021), although it can extend into the light period
(Eschbach et al., 2005), many new cells are present and able to
influence the turbidity measurements when their photosynthetic
apparatus is turned on at sunrise. See also Figure 1 for daughter
cells still inside the parental cell after multiple fission. A similar
explanation can be given for the substantial rise in NTU at sunset.
As the cells switch their metabolism from the light phase to the dark
phase, less light is absorbed, thereby increasing the scattering of light
and giving a higher NTU value at sunset and during the night.

When artificial light was provided (days 1, 2, and 6), a similar
pattern could be observed. A steep decrease in turbidity was
observed when the artificial light was turned on prior to sunset
(purple dashed arrows), and an increase was seen when turning
off the artificial light after sunset (light green dashed arrow;
Figure 5B). Figure 5A shows that the effect of the artificial
light was similar but not exactly the same. The steady increase of
turbidity (NTU) during the growth phase was lower when only
artificial light was present as compared to sunlight (plateau
between gray and black arrow). However, the substantial
increase in turbidity was similar when turning off the artificial
light compared to at sunset (Figure 5B, dashed light green
arrows). Figure 5B also shows that after turning on the
artificial light before sunrise a second, lower drop in turbidity

was observable at sunrise (yellow arrows with the symbol “o” on
top). Although no significant effect of artificial light was detected
on the biomass production of C. typhlos, artificial light did,
however, have a noticeable impact on the growth pattern of C.
typhlos.

It is possible to use a continuous turbidity measurement in
combination with the correlation between turbidity and dry
weight to track the dry weight evolution (Thoré et al., 2021).
Our results, however, also indicate that caution is needed when
interpreting and linking turbidity measurements with the dry
weight of the microalga cultivated. However, the growth
(turbidity) pattern of C. typhlos was also different compared to
other non-snow algae tested. Both P. purpureum and N. gaditana
showed a substantial decrease in turbidity during the night
(unpublished data) but no substantial decrease or increase
respectively at sunrise and sunset. This could potentially
indicate a different and faster response of snow algae to a
night and day cycle. Like biomass loss overnight, the influence
of the day/night cycles of microalgae and their effect on the cells,
cell division, and biomass are still understudied and can vary
between algae (Edmundson and Huesemann, 2015; de Winter
et al., 2017a; León-Saiki et al., 2018). To optimize microalgae
cultivation, the nightly biomass loss and circadian rhythm can be
important factors to establish the optimal time of harvesting.
Future studies should address this.

CO2 Fixation and Utilization Efficiency
To investigate the CO2 fixation and utilization efficiency, the total
CO2 injected into the photobioreactor was monitored. Using the
total biomass produced during each period, the efficiency of CO2

uptake could be calculated (Table 3).
During the periods 10–19 December 2019 and 17–26

January 2020, the CO2 utilization efficiency was the highest
at 29.97 and 38.42%, respectively. The other periods achieved
lower utilization efficiencies with percentages between 2.4 and
9.11%. The exact reasons for this difference are unclear as
many factors can influence the CO2 utilization efficiency (Ryu
et al., 2009; Daneshvar et al., 2022). Both periods have the
lowest total PAR received (2,379 ± 345 and 2,604 ± 791 mmol/
m2); however, they do not differ significantly from the periods
19–28 March 2019 and 10–19 February (Table 2).

A second observation is that the maximum greenhouse
temperatures reached during these two periods were also the

TABLE 3 |Overview of the total CO2 injected during each batch growth test, pH was set at 8, and CO2 was injected on demand to maintain a steady pH. The two periods in
bold show the highest CO2 utilization efficiency.

Period Average pH Average
temperature

(Ce − Cs) CO2t CO2th CO2tL U% CO2fr

g L−1 g g g % g L−1 d−1

19–28 March 2019 8.21 ± 0.49 17.5 ± 0.9 0.250 5,390 160 5,220 2.97 0.05
1–10 April 2019 8.00 ± 0.25 18.4 ± 1.4 0.413 7,620 265 7,355 3.48 0.08
17–26 April 2019 7.93 ± 0.18 22.5 ± 2.5 0.091 2,430 58 2,372 2.40 0.02
10–19 December 2019 7.86 ± 0.25 16.7 ± 1.8 0.285 610 182 428 29.97 0.06
17–26 January 2020 7.80 ± 0.30 12.4 ± 1.4 0.515 860 330 530 38.42 0.11
27 January–5 February 2020 7.88 ± 0.24 15.1 ± 1.0 0.605 4,260 388 3,872 9.11 0.12
10–19 February 2020 7.96 ± 0.39 15.5 ± 1.5 0.543 3,980 348 3,632 8.75 0.11
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two lowest registered maximum temperatures, but the average
temperature of the period 10–19 December was higher than that
of three other periods (Table 2). During our tests, the worst
efficiencies were seen during the three warmest periods (19–28
March 2019, 17.46 ± 0.9°C; 1–10 April 2019, 18.4 ± 1.4°C; and
17–26 April 2019, 22.4 ± 2.5°C). This is in line with the lower
solubility of CO2 at higher temperatures (Singh and Singh,
2014). While we observed a wide range of CO2 fixation rates
and utilization efficiency, they are in accord with what others
have already found for other algal species (Tang et al., 2011;
Ketheesan and Nirmalakhandan, 2012; Lam et al., 2012). In
laboratory conditions and smaller working volumes, one can
easily maintain specific parameters such as total PAR, pH,
temperature, or a day/night period; however, it is less
possible in a greenhouse pilot plant or outdoors. In order to
truly find a correlation between different parameters and CO2

utilization to improve the utilization efficiency, more pilot plant
studies are needed. CO2 utilization efficiency can be very low
and is influenced by many parameters such as the temperature,
pH, and growth rate, making the design of a reactor with
optimal gas exchange expensive and very difficult (Carvalho
et al., 2006; Klinthong et al., 2015; Fu et al., 2019), if not
impossible. In different (seasonal) weather conditions
outdoors or in a greenhouse, it can particularly be arduous.
Thus, a more interesting approach for improved sustainability
might be to capture the CO2 in the effluent gas and reuse it for
the influent, lowering the total CO2 lost into the air.

CONCLUSION

The psychrotolerant microalga C. typhlos was successfully
cultivated in a greenhouse in a photobioreactor with a
working volume of 350 L during several batch periods,
ranging from winter to spring. A maximum dry weight and
growth rate of 1.082 g L−1 and 0.105 d−1, respectively, were
achieved while maximum volumetric and areal productivities
of 0.110 g L−1 d−1 and 2.746 g m−2 d−1, respectively, were
measured. Being one of the first pilot-scale cultivation tests
of a snow alga in a photobioreactor, it is difficult to compare
with known data from snow algae. One critical factor,
negatively influencing the growth, was shown to be
ambient temperatures of >30°C. Lower temperatures
(11–15°C), however, had no detrimental effect on the

growth. Due to the distinct growth pattern influenced by
sunset or artificial light, it will be crucial to determine how
to use artificial lights to find the optimal light/dark regime.
While these experiments were carried out at a set pH of 8,
future tests at different pH values will be crucial to determine
the optimal pH and CO2 uptake efficiency. Future tests to
optimize the cultivation and production of C. typhlos biomass
are, thus, crucial to estimate its commercial value.
Furthermore, the production of astaxanthin or PUFAs has
to be studied to fully explore the potential of C. typhlos.
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